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Introduction

This talk is a long (sorry!!)
presentation about the Short
Baseline program at Fermilab.

This talk 1s “From MicroBooNE to
MicroBooNE,” which means that

almost all of the results you see are
produced by MicroBooNE
collaborators.




A comment...

Please feel free to interrupt this talk with physics comments,
questions, or anything else relevant to the analysis.

While this 1s a talk working towards approval of these plots,
please send aesthetic comments by email - many plots here are
not in final form and are 1llustrative and this talk 1s long enough
as 1t 1s!

The intention is to show the analysis methods and the current
draft plots so that when they are ready and are inserted into the
SBN report, there are no surprises.



Documentation

There are many references for this entire endeavor.

While it seems like cheating, I haven’t listed them
here and 1nstead will direct you to the far more
organized reference sections in:

he SBN Conceptual Report (released soon)
The LAr1-ND CDR (released soon)

The technote on docdb 3732

he original LAr1-ND Proposal

The SBN Status Report from July 2014

The “lar]” branch of LArLight



http://microboone-docdb.fnal.gov:8080/cgi-bin/ShowDocument?docid=3732
http://arxiv.org/abs/1309.7987
http://sbn-docdb.fnal.gov:8080/cgi-bin/ShowDocument?docid=38

Event Rate Calculations




Oscillation Analysis

v_ Appearance 1s driven v _Disappearance 1s

e wooo
by the search for an looking for an absence
excess signal on top of a  of events from a
predicted background. predicted spectrum.

The different drivers mean the two searches approach their
event selection in different ways.

- Reduce background - Constrain expected rate to
- Quantify errors on as high precision as
background possible



Event Selection

Select events by
topology: Looking for a
single shower event that
does not have an obvious
gap between the shower
and a vertex with
charged activity.

Select events by looking
for events with a
contained track
consistent with a muon,
or one that 1s exiting but
has enough contained to
reconstruct energy.



v, Background Event

Candidates

v events can come from:

e Intrinsic beam electron neutrinos (irreducible
background).

e Neutrino Electron Scattering (Irreducible but
small background)

e Neutral Current Single Photon Misidentification

°* Vv, Charged Current Misidentification

} Not covered in this talk.
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v - electron Scattering

Two options:
v, T e’ — v, t e" (NC only)
v.+e" —v +e" (CCorNC)

Detector Signature: Forward going electron with no
vertex activity

Irreducible background but ~negligible compared to
others due to low cross section.
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Neutral Current MisiID

Neutral current events can
produce a photon that can be
misidentified as an electron.

Shower can be rejected if:

- dEdX positively 1dentifies
it as a photon, OR

-> There 1s a visible gap
between the photon and an
interaction vertex

.....................................................
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Neutral Current MisiID

All Photon Events
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Neutral Current MisiID

Vertex Energy of Single Photons
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Can reject single photons 1f the vertex activity 1s high enough

AND the gap between the vertex and the shower 1s big enough.



Neutral Current MisiD

- Any event with multiple photons 1s rejected.
€ Therefore, all NC MisID have exactly one photon

-> If that photon 1s from an interaction with more than
150 MeV of visible energy at the vertex, AND 1f
travels more than 1.5cm from that vertex (5 wires),
it 1s rejected

-> The rest of the single photons are kept at a 6% rate
to account for the failure of a dE/dX cut.

14



Charged Current MislD

This background 1s not
well determined - there
have been many
conflicting studies on the

size of the mis ID from
Argoneut event that we found when Charge d Current .
-

searching for electrons but is tagged as a
muon by MINOS - one possible topology
for misID 1s an exiting muon with

showering activity like above. = ReqUireS a more careful

study, so using flat
0.1%. 15




Assumed Resolution [%)]

Shower Energy

Reconstruction

Smearing showers
with a resolution of
15%/(E)
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Hadronic Energy

Reconstruction

All charged hadrons at the neutrino vertex are
assumed to be “visible” if they have more than 20
MeV of Kinetic Energy.

Vertex Energy 1s defined as the energy from a
neutrino interaction: Proton KE, but Pion total E and
Kaon total E.

All vertex energy has a 5% resolution.
17



v, Event Candidates

Vi events are:
e Charged Current v, interactions that produce a

muon
e Necutral Current events with charged pions - how

to distinguish from muons?
Because the number of v, CC interactions is so
high, this analysis is (for practical purposes)
background free

18



v, Event Candidates

Example Background Study v, events are accepted at 80%
efficiency
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e 2%, for contained tracks

Muon Energy

Reconstruction

Apply a gaussian energy smearing with the width set to:

e Based upon Multiple Coulomb Scattering measurements
performed by ICARUS, for exiting track with length >1m

Exiting Muons
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http://www.springerlink.com/content/y8q3323711342015/?MUD=MP
http://www.springerlink.com/content/y8q3323711342015/?MUD=MP

Neutrino Energy

Reconstruction
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MicroBooNE v,
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LAr1-ND, T600 v_
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MicroBooNE v,
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Flux Uncertainties




Beam uncertainties

We focus on understanding the uncertainty in the
neutrino flux coming from the hadron production at

the target, as well as off target and secondary
interactions
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Underlying Uncertainties

7wt production in primary p+Be collisions at 8 GeV.
7~ production in primary p+Be collisions at 8 GeV.
K™ production in primary p+Be collisions at 8 GeV.
K~ production in primary p+Be collisions at 8 GeV.
K? production in primary p+Be collisions at 8 GeV.
Primary hadron production from non-target interactions

Beam focusing uncertainties.

28



Propagation of Weights

Each weight 1s carried with the neutrinos that reach
the final flux file.

With 1000 “universes”, each neutrino has a weight
that corresponds to each “universe”.

These weights allow us to study correlations.

29



Absolute Flux Uncert.

By building the event rate distribution in each
“universe”, we get a spread of possible outcomes
within the flux uncertainty.

The bin by bin RMS can be used to look at the
absolute flux uncertainty on the event rates.

30



Uncert [%)]

Absolute flux Uncert.
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Absolute flux Uncert.

Source of Uncertainty Yy Ve
7 production 14.7% 9.3%
7~ production 0.0% 0.0%
K™ production 0.9% 11.5%
K?° production 0.0% 2.1%
Horn field 2.2% 0.6%
Nucleon cross sections 2.8% 3.3%
Pion cross sections 1.2% 0.8%
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Correlated Uncertainties

Beam fluctuations should be correlated between
detectors!

In particular, if the flux 1n one “universe” changes at
one detector, it should change in a very similar way
at another detector.

Therefore, the ratio of far detector to near detector

event rates should have much less uncertainty.
33
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Cross Section Uncertainties




Underlying Uncertainties

Neutrino Cross sections are one of the biggest
uncertainties that affect the normalization of our
expected backgrounds.

By varying the underlying physical parameters from
which the uncertainties originate, and computing
event weights (Just like 1in the flux uncertainties), we
can quantify the amount of uncertainty coming from
Cross sections.
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Physical Parameters Varied

Parameter Description PRELIMINARY Nominal %

MECeE Axial mass for CC quasi-elastic -15%+25%
MECRES Axial mass for CC resonance neutrino production +20%
MYCRES Axial mass for NC resonance neutrino production +20%
Rg,ffcm Non-resonance background in vp, CC 1n reactions. +50%
RZ,‘?‘(’}CC% Non-resonance background in vp, CC 2w reactions. +50%
Rg,:,;ccm Non-resonance background in vn, CC 17 reactions. +50%
Rg,:,;cww Non-resonance background in vn, CC 2w reactions. +50%
Rgf{;NCl” Non-resonance background in vp, NC 17 reactions. +50%
Rgf{;‘wcz’r Non-resonance background in vp, NC 27 reactions. +50%
Rﬂ,;NCI” Non-resonance background in vn, NC 17 reactions. +50%
Rﬂ,;NC?” Non-resonance background in vn, NC 27 reactions. +50%

DIS — NuclMod DIS Nuclear Modification

NC Neutral Current



Propagation of Weights

Each neutrino gets 250 weights from a random,
fluctuation of all underlying physical parameters
(each drawn from a 1 sigma gaussian for that
parameter).

With 250 “universes”, each neutrino has a weight
that corresponds to each “universe”.
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Absolute Cross Section

uncerts.

By building the event rate distribution in each
“universe”, we get a spread of possible outcomes
within the Hux cross section uncertainty.

The bin by bin RMS can be used to look at the

absolute flux cross section uncertainty on the event
rates.
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Absolute Cross Section

uncert
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Correlations

Beam Cross Section fluctuations should be
correlated between detectors!

In particular, 1f the flux cross section 1n one
“universe” changes at one detector, 1t should change
in a very similar way at another detector.

Therefore, the ratio of far detector to near detector

event rates should have much less uncertainty.
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Ratio plots

V, Nominal Ratio (dark) and ratio in each universe (gray)
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Interlude: Analysis Methods




What 1s the proper way to handle the bin to bin and
detector to detector correlations 1n calculating a
sensitivity to a signal? Use a covariance matrix.

Start by defining a nominal event rate vector as the
concatenation of the event rates at individual
detectors:

— 1 2 k 1
NCV — (nND, 'n;ND, ceey 'n;ND, nuB,)
44



Event Rate in Each

“Universe”

Define the same vector in each “universe” of a

systematic like flux, or cross section:

| 2 k

N fluz,1 = (nND,flu:c,la NND,fluz,1> = ""ND, fluz,1>
N = (nj ns nk

fluz,a — \'*ND, fluz,a> "*"ND, fluz,a> ***» "YND,fluz,a:
| 2 k

N fluz, N = (”ND,fzux,Na “"ND, fluz N> v "ND, fluz N>

1
nuB,flux,l) )

1
nuB,flua:,a? )

1
NuB, fluz N 45)



Covariance Matrix

With each event rate vector, we make a covariance
matrix:

N
1 ; ; ' '
i,7 ﬁ E :[NCV o Nflua:,m] X [Ng}'V o N}lua:,m]
m=1

This matrix is the essential tool for doing a
multidetector analysis.
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Correlation Matrix

Fractional Cov. Matrix

The covariance matrix 1s easier to digest when
transformed 1nto a fractional matrix or a correlation
matrix:

SYSs SYS

Fsys Ez’,j A EZ,J
(2% i 7 tJ SYS SYS
(Nev New) Eii A/ Ej;
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Flux Matrices - v,

Fractional Error Matrix
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3 GeV
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Flux Matrices - v, and v,

uB v,

Fractional Error Matrix
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uB v,

Correlation Matrix
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Cross Section Matrices - A

Fractional Error Matrix Correlation Matrix
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Cross Section - v, and v,

Fractional Error Matrix
PRELIMINARY

Correlation Matrix
PRELIMINARY

uBv

uB v,
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Sensitivity Calculations




Simulating a Signal

To quantify the reach of the Short Baseline
Program, we need to work in the context of some
oscillations framework, and so we choose the 3+1
model.

P(v, — v,) = sin® 20)x sin (1.267 GeV L )

eV? km F

We can vary the amplitude and mass splitting to
simulate different oscillation scenarios within the

3+1 framework
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v, Oscillation Signal

The oscillation of the v spectrum 1s assumed to be
the disappearance of muon neutrinos into sterile
neutrinos.

We sample a series of possible combinations of
sin”20 and Am? drawn from reasonable ranges based
on existing limits, like MiniBooNE + SciBooNE
muon disappearance.
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v, Oscillation Signal

Signal 1s same mass splitting as Global Best Fit, but different

amplitude.
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v, Oscillation Signal

The oscillation of the v_spectrum 1s assumed to be
the disappearance of muon neutrinos into electron
neutrinos through an intermediate sterile neutrino.

We show a sensitivity over the whole LSND
allowed region as a comparison to existing
anomalies.
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v, Oscillation Spectrum

Signal Point 1s Global Best Fit from Kopp et al. (arxiv 1303.3011)
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Calculating a Sensitivity

The addition of oscillation changes the expected

event rates:
N = N (Am?,sin*26)

We can use the difference between “oscillated”
spectrum and predicted background to calculated a
v* for each point of (Am?, sin°20 )

X* = Y Wi — Ni(Am?, sin®26)] x (EL) ™ x N2, — N (Am?, sin?20)]

@3
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Total Covariance Matrix

Flux - Already covered

Xsec - Already covered

Dirt - Joseph’s Talk

Cosmic - In progress

Detector - In progress
Statistical - Diagonal only, \(n)

Etotal — Eflua: + ETsec | Edirt +Ecosmic _|_Edet + Estat
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Full Sensitivities

The Short Baseline document will include expected
sensitivities, using the total covariance matrix, in a
shape + rate analysis (which i1s what was described
above).

A realistic set of exposures will be used (ND =3
years, uB = 6 years, T600 = 3 years) based upon the
proposed schedule.
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The LArl-ND Conceptual Design Report Plans to
include several physics items that are specifically
enabled by the presence of the near detector, some of
which 1mnvolve MicroBooNE:

e Scaling of the Low Energy Excess as seen by LAr1-
ND

e Muon Neutrino Appearance “First Look™ (200 Days)

LAr1-ND Conceptual Design Report
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Slide 62: Death by

Presentation

This was a seriously long
talk.

At the next meeting, we
will present only the plots
for approval since we
have already presented all
of our assumptions and
analysis methods.

NECROBOONE
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